联系我们:电话: 0755-27838351手机: 138 2330 0879Q Q: 632862232立即咨询邮箱: konuaer@163.com
首页行业博客 要提高实时时钟精度的可行方案就是对晶振的筛选

要提高实时时钟精度的可行方案就是对晶振的筛选

来源:http://www.konuaer.net 作者:konuaer 2014年08月05
    不管是时钟还是手表用户对产品的要求都有所提高,厂家对此类电子产品也在不断的研发改进。都知道现在的人都讲究牌场,要面子,虽然知道自已的经济实不太雄厚,但对自身的着装穿着从不含糊,出去谈生意谈业务穿着是很重要的,因为别人可以从你的穿着可以看出你对这份工作的态度以及尊重,所以在不断改进的同时对电子元器件的选用也大大提高要求,相信大家都清楚时钟手表内部都会用到一颗电子元件,称之为“晶振”而晶振是电子元件当中最为常用的一种,晶振只是一个大类名称,也可以叫石英晶振,贴片晶体,石英晶体振荡器等等,不过时钟手表内部选用的是表晶32.768KHZ,下面对大家介绍到,我们先来看看时钟手表对晶振都有什么要求。
    厂家为满足市场对更高时钟精度的需求,半导体厂商正在研发创新的时钟解决方案,以提高计时精度。现在有越来越多的应用要求实时时钟在宽温度范围内具有极高的计时精度。多费率智能电表就是其中一个典型实例,因为供电公司需要记录多费率电能的使用数据,以便精确计算电费,这要求在23°C的参考温度下,实时时钟每天计时精度小于 ±0.5秒,即计时精度小于±6 ppm (百万分之一)。中国最新的电能表标准Q/GDW 357-2009规定,在-25°C至+60°C的温度范围内,实时时钟每天计时精度必须在±1秒(即 ±12 ppm)内。考虑到这个标准,普通实时时钟(RTC)无法满足这个应用要求。本文将论述多个提高计时精度的解决方案,同时还论述一个最佳的参考方案。
      典型实时时钟采用32.768 kHz音叉表晶石英晶体。这类晶振容易在市场买到,而且价格较便宜。在25°C时,晶体通常可提供大约±25 ppm的计时精度或每天2秒的误差。虽然非常适合电池供电应用的低功耗需求,但是在-40 °C 至 +85 °C的工业温度范围内,频率变化很大。在极端温度条件下,频率误差可能在-108 ppm 至 -177 ppm 之间
要提高实时时钟精度的可行方案就是对晶振的筛选
      有多种方法可提高实时时钟的计时精度。提高参考时钟(晶体)的技术参数是首选的且最简单的解决办法。通过晶体筛选可获得±10 ppm甚至±5 ppm的精度。时钟筛选虽然可行,但不是最佳方案,因为厂商提高晶体计时精度的成本昂贵。这种方法的最大限制是只能在一个温度点(例如室温)筛选晶体。但是,随着工业温度变化,频率偏差的抛物线特性依然存在。
将晶体置于实时时钟封装内
      虽然将晶体置入实时时钟封装内是一个较好的可提高计时精度的解决办法,可以消除湿度、振动和压力等环境因素的影响,但是无法单独解决石英晶体的频率随温度变化的不良特性导致时钟精度不高的问题。
以 60 Hz电力线为参考时钟
    该解决方案的原理是把 60 Hz 电力线(例如,美国市电)变成可用的时钟源。电力线的频率误差远远低于普通晶体。该解决方案必须把交流电源转换成实时时钟适用的频率源。大多数实时时钟的输入需要32.768KHZ的通用晶振,该晶振在内部分频,为应用提供第二时钟源。多数实时时钟不支持60Hz时钟,因此需要使用锁相环PLL修正实时时钟的输入频率。此外,因为60Hz时钟不是32,768时钟的约数,所以在进入锁相环之前,60Hz时钟被不断地分频,直到是32,768KHZ的公约数为止。该解决方案需要多个步骤,可能不适用某些用户。
     某些实时时钟的时钟源可使用60Hz频率。尽管该改进方案不再需要锁相环,但是电路对于部分用户仍然过于复杂,当主电源掉电时,实时时钟的精度没有保证。另一个可行的解决方案是使用AT切型晶体。AT切型晶体与微处理器配合,速度越快,晶体随温度变化的频率误差就越小,因此可提供更高的计时精度,但是,它们的晶振却不适合低功耗应用,因为在AT切型晶体的典型频率下,晶振的电流消耗太大。AT切型晶体误差
     该解决方案的主要原理是,微控制器的AT切型晶振为微控制器的定时器提供时钟信号。因为该晶体在工作温度范围内的误差很低,所以定时器时钟信号的频率误差也很低。因此,采用这个定时器的实时时钟在校准后,精度可接近时钟源的精度,因此可降低表晶因温度飘移而导致的计时误差。
     意法半导体的应用笔记AN2678详述了如何使用AT切型晶体补偿M41T82-83-93系列实时时钟的精度,在宽温度范围内取得更高的计时精度。
使用TCXO温补晶体振荡器
    另一个解决方案是使用TCXO (温补晶振)替代基本石英,以提高时钟源的计时精度。TCXO内置温度传感器,可使晶体对温度曲线在宽温度范围内变得平滑,取得±5 ppm的精度,但是该解决方案是一个成本更高的方案。是一个典型的 TCXO 功能框图。晶体和补偿电路都集成在TCXO芯片内,但是这种做法提高了TCXO的成本,使其成本比普通晶体至少高两倍。
采用温度补偿
     如果系统级有外部温度传感器,并位于实时时钟和晶体附近,则使用这个温度传感器可大幅提高计时精度。实时温度补偿只需增加应用软件,因此无需增加额外的元器件。意法半导体的应用笔记AN2971详述了如何在系统级使用温度传感器提高M41T83-93 系列实时时钟精度的方法。
      这个方法是根据已知晶体抛物线特性制作一个ΔPPM (实际频率与32,768 Hz参考频率的偏差)-温度查阅表,然后执行下列步骤:
1.测量温度,然后在查阅表中找到ΔPPM值。
2.调整模拟校准寄存器的设置,以修改CXI和CXO(连接XI和XO引脚的内部电容阵列)的负载电容值。
    因为模拟校准功能集成在实时时钟内,所以负载电容的变化能够影响晶体,降低或提高振荡频率。
    还可以通过数字方式校准实时时钟。数字校准的原理非常简单,就是向时钟链定期增减脉冲,以加快或减慢时钟运行速度。
     不管是采用模拟校准还是数字校准,系统级温度补偿都需要在电路板上安装温度传感器和内置校准功能的实时时钟以及相关的软件。
    意法半导体的M41TC8025是一个实时时钟整体解决方案,具有高成本效益,无需另行开发软件。晶体、温度传感器和实时时钟以及自动补偿算法都集成在一个封装内。只连接一个简单的外部电路,即可在-40 °C 至 85 °C 的宽温度范围内取得极高的计时精度(±5 ppm)。见 图 6。在0 °C 至 50 °C的温度范围内,计时精度提高到±3.8 ppm,这个成绩超出了大多数应用的要求,包括智能电表。
    为满足市场对时钟精度的更高需求,半导体厂商正在研发创新的时钟解决方案,以提高计时精度。意法半导体的M41TC8025是一个实时时钟整体解决方案,在一个简单易用的封装内集成了晶体、温度传感器、自动温度补偿算法和实时时钟。该解决方案不仅计时精度极高,而且成本低廉,特别适用于智能电表等计时精度要求高的应用设计。
正在载入评论数据...

发表评论:

姓名:
邮箱:
正文:

欢迎参与讨论,请在这里发表您的看法、交流您的观点。

康华尔诚征下列地区 晶振 | 石英晶振 | 圆柱晶振 | 贴片晶振 | 陶瓷晶振 | 石英晶体谐振器 | 频率元件 的合作伙伴:
广州市 深圳市 成都 北京 上海 东莞 佛山 中山 顺德 珠海 杭州 温州 武汉 长沙 南京 大连 长春 西安 郑州 沈阳 南宁 昆明 济南 重庆 澳门
32.768KHZ晶振,DST210AKDS晶振,KDS晶振32.768KDST310S,石英晶体振荡器DSB211SDTKDS晶振,KDS晶振DSX221S,KDS晶振DSX321SH,KDS晶振DSX321G,DMX-26SKDS晶振,32.768KHZ晶振,MC-146爱普生晶振,MC-306爱普生晶振,FC-135爱普生晶振,FC-12D爱普生晶振,TSX-3225爱普生晶振,FA-20H爱普生晶振,FA-118T爱普生晶振,FA-238V爱普生晶振,SA324CTS晶振,石英晶体振荡器CTS晶振,石英晶体振荡器CB2V5CTS晶振,温补晶振Model585CTS晶振,温补晶振DSB221SDNKDS晶振,温补晶振7LTXC晶振,;
首 页|石英晶体谐振器|进口晶振|欧美晶振|康华尔文化|人才招聘|常见问题|在线留言|站点地图|RSS订阅|在线问答|联系康华尔
在线客服
关闭

在线客服

客服头像

康华尔服务热线

0755-27838351

康华尔微信号